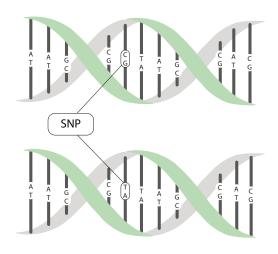

Predisposição a Obesidade e Sobrepeso Nutrigenética para personalização do tratamento da obesidade

DO LABORATORIO PARA O CONSULTÓRIO


O conceito global da genômica nutricional utiliza dois termos: a nutrigenética e a nutrigenômica. A nutrigenética estuda a influência do perfil genético individual na interação entre dieta e doença, com o objetivo de individualizar recomendações nutricionais, considerando riscos e benefícios de dietas específicas ou componentes dietéticos de acordo com a sequência genômica de cada indivíduo. Já a nutrigenômica estuda a resposta da expressão dos genes em relação ao consumo de nutrientes, uma vez que estes podem provocar alterações químicas que afetam a expressão gênica, inibindo ou induzindo a transcrição do aene.¹⁻⁴

A partir de dados do sequenciamento do DNA humano, constatou-se que, apesar das profundas diferenças existentes entre os indivíduos quanto a seus fenótipos (cor da pele, peso, altura), seus genomas apresentam similaridade de cerca de 99,9%. A pequena variação interindividual de 0,1% se dá, principalmente, por meio de variações na sequência do DNA conhecidas como polimorfismos de nucleotídeo único (single

FIGURA 1. Conceito global da genômica nutricional: nutrigenética e nutrigenômica.4

nucleotide polymorphism; SNP), que existem aos milhões no genoma humano. Muitas vezes, os SNPs podem levar a mudanças na estrutura, função, quantidade ou localização das proteínas codificadas, alterando inúmeros processos fisiológicos. Além de interferirem em características físicas, os SNPs também podem influenciar o risco para doenças crônicas não-transmissíveis, necessidades de nutrientes e resposta aos alimentos.^{2,4}

Duas sequências de fragmentos do DNA de diferentes individuos demonstrando uma variação na localizacao de um nucleotídeo único (polimorfismo C-T).⁴

Figura 2. Polimorfismo de nucleotídeo único (single nucleotide polymorphism; SNP).4

Com relação à terminologia, SNP descreve uma variação genética que existe na população humana em frequência ≥ 1%, enquanto que o termo MUTAÇÕES corresponde à variações genéticas existentes em < 1% da população humana.²

TESTES GENÉTICOS EM AMOSTRA DE SALIVA POSSUEM SENSIBILIDADE E PRECISÃO SEMELHANTES AO TESTE PADRÃO COM AMOSTRA DE SANGUE

Os testes genéticos são realizados em uma variedade de amostras biológicas, incluindo sangue, saliva, fezes, tecidos corpóreos, ossos ou cabelos.⁵

Estudos epidemiológicos para desenvolvimento de biobancos de DNA tem utilizado métodos de coleta menos invasivos, como as células epiteliais bucais coletadas da saliva.⁵⁻⁹

O DNA isolado de amostras da saliva em comparação ao DNA isolado do sangue não apresenta quantidade e pureza significativamente diferentes. Entretanto, o rendimento do DNA extraído da saliva é significativamente menor quando comparado ao extraído do sangue. Isto ocorre por conta do maior de volume de sangue coletado (8.5 ml) em comparação com o volume de saliva (0.5 ml).8

DNA	Pureza (A260/A280)	Rendimento (µg)
Sangue (n = 45)	1.85 ± 0.004	253.63 ± 26.6
Saliva (n= 42)	1.85 ± 0.02	21.09 ± 3.64
T-test P-value	0.709	1.32142 x 10 ⁻¹¹

Tabela 1. Pureza e rendimento do DNA coletado de amostras de sangue em comparação com amostras de saliva.⁸

Apesar do menor rendimento do DNA extraído da saliva, a concordância genotípica para todos os marcadores analisados por Microarray é alta, com concordância de 98,7% em ambos os tecidos.⁸ No estudo de comparação do desempenho genotípico entre DNA extraído da saliva e o extraído do sangue, a maioria das amostras de saliva (90%), contendo 31,3% de DNA humano amplificável, tiveram uma porcentagem de genótipos válidos (genotyping call rate) superior a 96%.⁸

Um outro estudo comparativo demonstrou que a porcentagem de genótipos válidos (genotyping call rate) para o DNA extraído do sangue foi de 99%, comparável com a porcentagem de genótipos válidos para o DNA extraído da saliva, de 97%.

FIGURA 3. Associação entre a porcentagem de DNA humano na saliva e a porcentagem de genótipos válidos.⁸

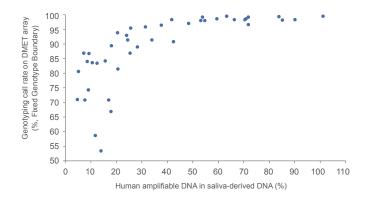
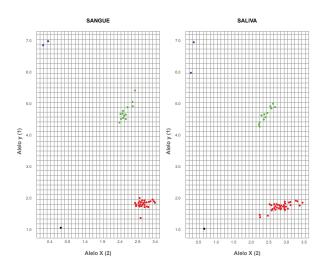



FIGURA 4. Plot Taqman da amplificação representativa para SNP (polimorfismos de nucleotídeo único) ilustrando a correspondência da força do sinal e da definição dos clusters para o DNA de ambas as fontes, sangue e saliva.⁹

A análise do DNA extraído da saliva possui várias vantagens em relação ao padrão ouro de coleta em sangue, dentre elas: menor custo, facilidade da coleta, facilidade de manuseio das amostras, estabilidade das amostras coletadas em temperatura ambiente, procedimento não invasivo.⁵⁻⁹

ASPECTOS GENÉTICOS DA OBESIDADE

Os genes da obesidade podem exercer os seus efeitos das seguintes formas:10

- alterando o controle da saciedade (genes FTO e MC4R);
- regulando o metabolismo dos lipídios (APOA5);
- alterando os gastos energéticos do organismo e a forma como o organismo processa os nutrientes (genes ADBR3);
- alterando a adipogenese e o metabolismo dos adipócitos (gene PPARγ2).

Genes reguladores da homeostase energética (controle da saciedade)¹⁰⁻¹⁶

Os genes FTO (Fat Mass and Obesity Associated) e MC4R (receptor da melanocortina 4; melanocortin receptor 4) estão altamente expressos no cérebro, especificamente no hipotálamo (região envolvida na regulação do apetite), e regulam a homeostase energética através do controle do apetite.¹⁰⁻¹⁶

TABELA 2. Genes reguladores da homeostase energética, polimorfismos mais frequentes e alterações dependentes do polimorfismo. 10-16

Gene	Polimorfismo	Alelo associado à obesidade	Alteração dependente do polimorfismo
FTO ¹⁰⁻¹³	rs9939609	Alelo A (principalmente em homozigose, AA)	Estudos demonstraram que os SNPs dos genes FTO e MC4R estão diretamente relacionados a: ¹⁰⁻¹⁴ • maior acúmulo de gordura corporal;
MC4R ¹⁴⁻¹⁶	rs10871777	Alelo G	 estímulo hiperfágico, ou seja, desenvolve-se uma postura de consumir, preferencialmente, alimentos com alta densidade energética; maior risco para obesidade (RR = 1,67); predisposição ao diabetes mellitus tipo II
	rs12970134	Alelo A	(rs9939609 presente em 42% em pacientes com DMT2); • maior incidência de obesidade infantil.

Gene relacionado ao metabolismo dos lipídios¹⁷⁻¹⁸

As apolipoproteínas (apo) são as proteínas constituintes das partículas lipoprotéicas responsáveis pela estabilização de sua estrutura e que têm diferentes funções no metabolismo lipídico: auxilia na solubilidade dos lípidios no plasma, ativa enzimas e permite a captação pelos tecidos. A apoliproteina A 5 (APOA5) está diretamente envolvida no transporte e regulação da concentração de triglicérides (TG) do plasma. Polimorfismos no gene APOA5 predispõem para o desenvolvimento de comorbidades associadas ao sobrepeso e à obesidade. 17-18

TABELA 3. Gene relacionado ao metabolismo dos lipídios.¹⁷⁻¹⁸

Gene	Polimorfismo	Alteração dependente do polimorfismo
APOA5 ^{17,18}	Rs662799	 Estudos demonstraram que polimorfismos no gene APOA 5 estão relacionados: ao metabolismo lipídico mais lento; ao aumento do risco cardiovascular (aumento do risco para doença coronariana e para aterosclerose); à hiperlipidemia familiar.

Gene relacionado ao processo de termogênese¹⁹

Os ADRBs (receptores adrenérgicos β) são expressos no tecido adiposo branco e estão intimamente envolvidos na regulação da lipólise, da termogênese e, consequentemente, desempenham importante papel no controle de peso corporal. O gene ADBR3 afeta principalmente a lipólise e seu polimorfismo vem sendo associado à síndrome metabólica e à obesidade.¹⁹

TABELA 4. Gene relacionado ao processo de termogênese, polimorfismo mais frequente e alterações dependentes do polimorfismo.¹⁹

Gene	Polimorfismo	Alteração dependente do polimorfismo
ADBR3 ¹⁹	Rs4994	Os SNPs no gene ADBR3 estão relacionados:* • à redução dos mecanismos de lipólise e termogênese; a um maior risco para sobrepeso e obesidade em especial em indivíduos com histórico familiar quando este risco passa a ser 4 vezes maior; • predisposição para hiperuricemia (risco 3 vezes maior) • aumento do risco para doença coronariana em mulheres.

Gene relacionado à adipogenese e o metabolismo dos adipócitos^{20,21}

Os receptores ativadores de proliferação de peroxissomos (PPAR) constituem uma família de receptores de fatores transcricionais que modulam muitos aspectos do metabolismo lipídico, a homeostase da glicose, a aterogênese e atua como regulador central da adipogênese. O gene PPARy pode ser diretamente ativado por lipídios insaturados presentes na dieta.^{20,21}

TABELA 5. Gene relacionado à adipogenese e ao metabolismo dos adipócitos, polimorfismo mais frequente e alterações dependentes do polimorfismo.²⁰²¹

Gene	Polimorfismo	Alteração dependente do polimorfismo
PPARγ	rs1801282	O SNP rs1801282 no gene foi associado ao maior risco de sobrepeso e obesidade; à melhora da sensibilidade pela ação da insulina, bem como à proteção contra o desenvolvimento de Diabete Mellitus tipo 2 (DMT2). Os estudos de interação entre gene e nutriente e DMT2 demonstraram que pacientes portadores do genótipo Pro12Ala apresentaram maior incidência de DM quando expostos a um elevado consumo de gordura saturada e gordura trans.

ANÁLISE DE MUTAÇÃO DO DNA POR PCR E SEQUENCIAMENTO DE NUCLEOTÍDEOS

O teste consiste do isolamento do DNA genômico de células da mucosa bucal, análise de mutação do DNA por Reação em cadeia da Polimerase (PCR) e sequenciamento de nucleotídeos. O teste consiste na amplificação de cinco genes e posterior análise da sequência para a detecção de seis possíveis variantes genéticas associadas à predisposição à Obesidade: PPARγ2 (rs1801282), ADRB3 (rs4994), APOA5 (rs662799), FTO (rs9939609), MC4R (rs10871777 e rs12970134). A acurácia do teste é > 99,99%.

REEMBOLSO PLANOS DE SAUDE

A tabela TUSS (Terminologia Unificada da Saúde Suplementar) foi instituída pela Agência Nacional de Saúde Suplementar (ANS), através de sua Instrução Normativa nº 38, de 13 de novembro de 2009 e tem por objetivo padronizar os códigos e nomenclaturas dos procedimentos médicos.²²

A tabela TUSS inclui o procedimento de testes genéticos, como a DNALIFE®, e os classifica pela doença que se pretende diagnosticar ou pela tecnologia de análise genética utilizada. Assim, é possível orientar o paciente para que ele solicite o reembolso do DNA FIT® facilitando assim o acesso a esta nova tecnologia.

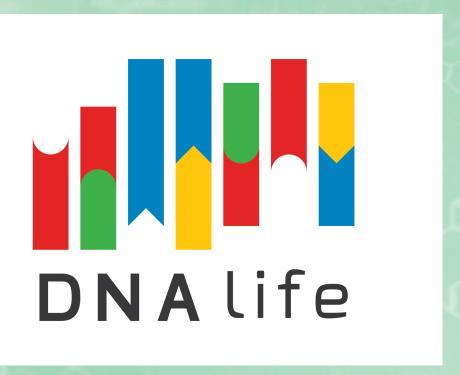
Orientações para solicitar reembolso

Colocar no pedido de exames:

- Os dados necessários do paciente;
- Especificação do TESTE® solicitado;
- O código e a descrição da Tabela TUSS.

Solicite que o paciente entre em contato com o seu plano de saúde e confirme a cobertura destes códigos e o valor do reembolso, podendo estas informações facilitar o pedido de reembolso por parte do paciente.

Informe que o reembolso, contudo, continuará seguindo as mesmas normas (de acordo com a modalidade e regulamento do plano), **não significando que o usuário terá as despesas reembolsadas integralmente.**


TABELA 6. Tabela de codificação dos Exames

Nome Comercial DNALIFE ®	Cód TUSS	Variantes Analisadas	Descrição TUSS
Predisposição à Obesidade, por Multiplex 5 locus diferentes*	40503054	APOA5	Análise de DNA pela técnica multiplex por locus, por amostra
	40503046	PPARg	Análise de DNA pela técnica multiplex por locus EXTRA, por amostra.
	40503046	ADRB3	Análise de DNA pela técnica multiplex por locus EXTRA, por amostra.
	40503046	MC4R	Análise de DNA pela técnica multiplex por locus EXTRA, por amostra.
	40503046	FTO	Análise de DNA pela técnica multiplex por locus EXTRA, por amostra.

Referências:

- 1. Steemburgo T, et al. Interação entre gene e nutriente e sua associação à obesidade e ao diabetes melito. Ara Bras Endocrinol Metab vol.53 no.5 São Paulo July 2009.
- 2. Conti A, et al. Nutrigenônica: revolução genômica na nutrição. Cienc. Cult. vol.62 no.2 São Paulo 2010.
- 3. Kang JX. The coming of age of nutrigenetics and nutrigenomics. J Nutrigenet Nutrigenomics 2012;5(1):1-II.
- 4. Miae Doo and Yangha Kim. Obesity: Interactions of Genome and Nutrients Intake. Prev. Nutr. Food Sci. 2015;20(1):1-7.
- 5. Fanyue Sun, Ernst J Reichenberger. Saliva as a Source of Genomic DNA for Genetic Studies: Review of Current Methods and Applications. Oral Health Dent Manag 2014 Jun;13(2):217-22.
- 6. Ana P Nunes, et al. Quality of DNA extracted from saliva samples collected with the Oragene™ DNA self-collection kit. BMC Medical Research Methodology 2012, 12:65.
- 7. Hu Y, Ehli EA, Nelson K, Bohlen K, Lynch C, et al. (2012) Genotyping Performance between Saliva and Blood-Derived Genomic DNAs on the DMET Array: A Comparison. PLoS ONE 7(3): e33968. doi:10.1371/journal.pone.0033968.
- 8. Jean E Abraham, et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Medical Genomics 2012, 5:19.
- 9. Küchler EC, et al. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J Appl Oral Sci. 2012 Jul-Aug;20(4):467-71.
- 10. Marti A, et al. Nutrigenetics: a tool to provide personalized nutritional therapy to the obese. World Rev Nutr Diet 2010;101:21-33.
- 11. Peng S, et al. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Medicine 2011, 9:71.
- 12. Frayling TM, et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007 May 11: 316 (5826): 889-894.
- 13. Lima Wa, et al. Fenótipo da gordura, fatores associados e o polimorfismo rs9939609 do gene FTO. Rev Bras Cineantropom Desempenho Hum 2010, 12(2):164-172.
- 14. Elks CE, et al. Genetic Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain and Growth. PLoS Med 2010 May 25;7(5).
- 15. Chambers JC, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 2008 Jun;40(6):716-8. doi: 10.1038/na.156. Epub 2008 May 4.
- 16. Zobel DP, et al. Variants near MC4R are associated with obesity and influence obesity-related quantitative traits in a population of middle-aged people: studies of 14,940 Danes. Diabetes 2009 Mar;58(3):757-64.
- 17. Garelnabi M, et al. The paradox of ApoA5 modulation of triglycerides: evidence from clinical and basic research. Clin Biochem 2013 Jan;46(1-2):12-9.
- 18. Sarvar N, et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 2010 May 8;375(9726):1634-9.
- 19. Kazuko Masuo. Roles of Beta2- and Beta3-Adrenoceptor Polymorphisms in Hypertension and Metabolic Syndrome. International Journal of Hypertension Volume 2010 (2010), Article ID 832821.
- 20. Min-ChulCho, et al. Peroxisome Proliferators-Activated Receptor(PPAR) Modulators and Metabolic Disorders. PPAR Research Volume 2008, Article ID 679137.
- 21. Queiroz JCF, et al. Controle da adipogênese por ácidos graxos. Ara Bras Endocrinol Metab. 2009;53/5582.
- 22. Instrução Normativa 38 de 13 de novembro de 2009 da Agencia

Caso tenha interesse em receber algum dos artigos listados acima, solicite ao representante que o visita ou entre em contato através do email contato@dnalife.com.br

Av. São Gualter, 433 - Alto de Pinheiros CEP 05454-090 - São Paulo/SP - Brasil

> www.dnalife.com.br Tel.: 11 3021-3704 contato@dnalife.com.br