SEX: FEMALE ACC #: F7715014 DATE: NOV 12, 2015

SUMMARY

PAGE 6

YOUR MATCHING DIET

III
₩.

Matching Diet Type p. 8	LOW CARB DIET
Response To Monounsaturated Fats p. 11	NEUTRAL
Response To Polyunsaturated Fats p. 11	INCREASED BENEFIT
Omega-6 And Omega-3 Levels p. 12	TYPICAL

EATING BEHAVIOR TRAITS

Snacking p. 14	TYPICAL
Hunger p. 14	INCREASED
Satiety - Feeling Full p. 14	TYPICAL
Eating Disinhibition p. 15	LESS LIKELY
Food Desire p. 15	TYPICAL
Sweet Tooth p. 16	TYPICAL

FOOD REACTIONS

Caffeine Metabolism p. 18	FAST METABOLIZER
Bitter Taste p. 18	TASTER
Sweet Taste p. 19	TYPICAL
Lactose Intolerance p. 19	LESS LIKELY
Alcohol Flush p. 20	LESS LIKELY

NUTRITIONAL NEEDS

Vitamin B2 p. 22	STAY BALANCED
Vitamin B6 p. 23	OPTIMIZE INTAKE
Vitamin B12 p. 23	OPTIMIZE INTAKE
Folate - Folic Acid p. 24	OPTIMIZE INTAKE
Vitamin A p. 25	OPTIMIZE INTAKE
Vitamin C p. 26	STAY BALANCED
Vitamin D p. 26	STAY BALANCED
Vitamin E p. 27	STAY BALANCED

EXERCISE

Endurance Training p. 30	ENHANCED BENEFIT
Strength Training p. 31	LESS BENEFICIAL
Aerobic Capacity (VO2max) p. 31	TYPICAL
Muscle Power p. 32	ENHANCED MUSCLE POWER
Achilles Tendinopathy p. 32	TYPICAL
Weight Loss Response To Exercise p. 33	EXERCISE STRONGLY RECOMMENDED
Blood Pressure Response To Exercise p. 33	EXERCISE STRONGLY RECOMMENDED
HDL (Good) Cholesterol Response To Exercise p. 34	NORMAL BENEFIT
Loss Of Body Fat Response To Exercise p. 34	NORMAL BENEFIT
Insulin Sensitivity Response To Exercise p. 34	ENHANCED BENEFIT

YOUR BODY AND WEIGHT

Obesity p. 37	AVERAGE
Weight Loss-regain p. 37	MORE LIKELY TO GAIN WEIGHT BACK
Metabolism p. 38	NORMAL
Adiponectin Levels p. 38	POSSIBLY LOW

METABOLIC HEALTH FACTORS

Elevated LDL Cholesterol p. 40	ABOVE AVERAGE
Decreased HDL Cholesterol p. 41	ABOVE AVERAGE
Elevated Triglycerides p. 42	ABOVE AVERAGE
Elevated Blood Sugar p. 43	AVERAGE

SEX: FEMALE ACC #: F7715014 DATE: NOV 12, 2015

EATING BEHAVIOR **TRAITS**

PAGE 14

EATING BEHAVIOR TRAITS SNACKING

Snacking can be a healthy or unhealthy behavior. Snacking on balanced foods, containing healthy fats, lean protein, fiber and low glycemic index carbohydrates, in small portions, throughout the day can help control hunger cravings and reduce total caloric intake, while snacking on junk food can have negative health effects. Genetic markers associated with snacking behavior include variants in the receptor for leptin, an essential hormone for the regulation of food intake. The possible results in this report are "Typical" and "Increased." If you receive the "Increased" result, you may want to curtail the negative effects of snacking by choosing healthy snacks, eating slowly and reducing the size or calories of snacks. People with the G/G genotype in a leptin receptor (LEPR) genetic marker were more likely to show "Increased" snacking behavior¹⁷. "Typical" genotypes were not associated with "Increased" snacking behavior in the same study. This association has not been studied in men.

TYPICAL

Your genotype is not associated with extreme snacking behavior.

VOUR RELATED GENES

_		
Gene Tested	Your Genotype	Scientific Strength
LEPR-rs2025804	A/G	****

EATING BEHAVIOR TRAITS HUNGER

While most of us know the feeling of hunger, some people feel hunger more intensely and more often than others. Susceptibility to hunger can now be partially explained by genetics. A variation in the NMB gene has been associated with increased feelings of hunger¹⁸. When asked about their own eating behaviors on a questionnaire, people with a T/T genotype were more likely to report an "Increased" susceptibility to hunger, while others were likely to have a "Typical" hunger response. This preliminary information is based on a study rated with one star of scientific strength.

▶ YOUR RESULT ◀

INCREASED

People with your genotype are more likely to exhibit high levels of susceptibility to hunger.

YOUR RELATED GENES

Gene Tested	Your Genotype	Scientific Strength
NMB-rs1051168	T/T	****

EATING BEHAVIOR TRAITS SATIETY - FEELING FULL

Satiety can be described as the feeling of fullness after you eat. The FTO (fat mass and obesity-associated) gene is known to be an important factor that predisposes a person to a healthy or unhealthy level of body weight¹⁹. The two possible outcomes in this report are "Difficulty in Feeling Full" and "Typical." People who experience "Difficulty in Feeling Full" tend to eat more without feeling satisfied. To help manage this outcome, you could increase the amount of fiber in your diet and balance meals and snacks throughout the day. Examples of foods high in fiber include whole wheat bread, oatmeal, barley, lentils, black beans, artichokes, raspberries, and peas. In a 2008 study, the A/A genotype at rs9939609 in the FTO gene was associated with "Difficulty in Feeling Full" 20. Although this study was done in children, there is preliminary data to support that the association also holds true in adults²¹.

▶ YOUR RESULT ◀

TYPICAL

People with your genotype tend to feel full after a meal.

YOUR RELATED GENES

Gene Tested	Your Genotype	Scientific Strength
FTO-rs9939609	A/T	****

SEX: FEMALE ACC #: F7715014 DATE: NOV 12, 2015

EATING BEHAVIOR TRAITS

PAGE 15

EATING BEHAVIOR TRAITS EATING DISINHIBITION

Eating disinhibition describes the tendency to eat more than normal in response to a stimulus, such as a tasty food or in situations that trigger overeating (e.g., emotional stress or specific social situations). In a 2010 study, the T allele of rs1726866 was "More Likely" to be associated with eating disinhibition in women²². The C/C genotype at the same marker was "Less Likely" to be associated with eating disinhibition. There is not enough scientific evidence yet to determine if this association also holds for men.

▶ YOUR RESULT ◀

LESS LIKELY

Your genotype is not associated with an increase in susceptibility for eating disinhibition.

YOUR RELATED GENES		
Gene Tested Your Scientific Genotype Strength		
TAS2R38-rs1726866	C/C	****

EATING BEHAVIOR TRAITS FOOD DESIRE

Although there is no objective method to quantify someone's feeling of hunger or liking for a particular type of food, behavioral scientists have devised techniques to measure an individual's motivation to consume food and compare it with that of others. This measurement, called the reinforcing value of food²³, describes how much effort an individual is willing to put forth to get access to food. The reinforcing value can be determined through a series of tests in a laboratory setting. In each of those tests, the individual being tested is asked to complete a task in exchange for a small portion of his or her favorite foods. The task of the initial test is easy, so the food is not difficult to win. As the tests continue, the task gets more and more difficult until, at some point, the participant feels that the food is no longer worth the effort and decides to guit. This experiment tells us that early guitters, when compared with late guitters, are low in food reinforcement. Using this technique, a 2007 study¹⁴ identified a genetic component in food reinforcement. Among people who were considered obese, those who had a specific variant (T allele) of the genetic marker rs1800497 had an "Increased" likelihood to make more effort to obtain their favorite foods and eat more of them. In contrast, the C/C genotype was associated with "Typical" levels of food reinforcement.

YOUR RESULT

TYPICAL

Your genotype is not associated with an increased desire or willingness to put forth additional effort to obtain your favorite foods

YOUR RELATED GENES			
Gene Tested	Your Genotype	Scientific Strength	
ANKK1/ DRD2-rs1800497	C/C	****	

SAMPLE REPORT

NAME/ID: SAMPLE PATIENT SEX: FEMALE ACC #: F7715014 DATE: NOV 12, 2015

METABOLIC HEALTH FACTORS

PAGE 42

METABOLIC HEALTH FACTORS ELEVATED TRIGLYCERIDES

Triglyceride is the chemical term for fat as it is stored in your body. People with elevated triglycerides are at risk of conditions, such as coronary artery disease or type 2 diabetes. Having higher triglycerides is often associated with poor lifestyle choices, such as lack of exercise, excessive alcohol consumption, cigarette smoking, excessive refined carbohydrate consumption and being overweight. A normal triglyceride score is under 150 mg/dl. Triglyceride levels in the range of 150 to 199 mg/dl are defined as borderline high, with over 200 mg/dl considered high and over 500 mg/dl very high. Your triglyceride levels can be monitored by your physician.

A result of "High" or "Above Average" does not mean you have elevated triglyceride levels, but tells you that you may have a propensity for elevated triglycerides levels. On the other hand, a genetic test result of "Low" or "Below Average," tells you that you have a lower than average likelihood for elevated triglyceride levels. The genetic test is based on genetic variants studied in over 19,000 individuals. A genetic result of "High" means that you share a similar genetic profile with individuals from the Framingham Heart Study who had elevated triglyceride levels measuring on average above 150 mg/dl with approximately 31% of individuals measuring above 200 mg/dl⁸.

► YOUR PROBABILITY ◀

ABOVE AVERAGE

You share a similar genetic profile with individuals who exhibit borderline-high triglyceride levels. Therefore, you have a higher than average likelihood for elevated triglyceride levels.

YOUR RELATED GENES		
Gene Tested	Your Genotype	Scientific Strength
ANGPTL3-rs10889353	A/C	****
APOB-rs7557067	A/A	****
FADS1-rs174547	T/T	****
GCKR-rs1260326	C/T	****
LPL-rs12678919	A/A	****
MLXIPL-rs714052	T/T	****
NCAN-rs17216525	C/C	****
PLTP-rs7679	C/T	****
TRIB1-rs2954029	A/A	****
XKR6-rs7819412	A/A	****
ZNF259-rs964184	C/G	****

SEX: FEMALE ACC #: F7715014 DATE: NOV 12, 2015

METABOLIC HEALTH FACTORS

PAGE 43

METABOLIC HEALTH FACTORS ELEVATED BLOOD SUGAR

Elevated blood sugar is a health condition that results from higher than normal levels of the sugar (glucose) in the blood plasma. High blood sugar levels are measured as a reading greater than 140 mg/dl or a fasting plasma glucose level of greater than 100 mg/dl. High blood sugar levels often indicate a condition called insulin resistance and can lead to type 2 diabetes. Your physician can directly measure blood sugar or you can use a blood test at home to check your blood sugar.

A genetic result of "High" or "Above Average" does not mean you have elevated blood sugar levels, but tells you that you may have a genetic propensity for elevated blood sugar levels. On the other hand, a result of "Low" or "Below Average," tells you that you have a lower than average genetic likelihood for elevated blood sugar levels. This report is based on genetic variants identified in a study of more than 100,000 individuals^{9,98}.

▶ YOUR PROBABILITY ◀

AVERAGE

Based on your genetic profile you have an average likelihood for elevated blood sugar levels.

YOUR RELATED GENES		
Gene Tested	Your Genotype	Scientific Strength
ADCY5-rs11708067	A/A	****
ADRA2A-rs10885122	G/G	****
CRY2-rs11605924	A/C	****
FADS1-rs174550	T/T	****
G6PC2-rs560887	G/G	****
GCK-rs4607517	A/G	****
GCKR-rs780094	G/A	****
GLIS3-rs7034200	A/C	****
MADD-rs7944584	A/T	****
MTNR1B-rs10830963	C/C	****
PROX1-rs340874	C/C	****
SLC2A2-rs11920090	T/T	****
TCF7L2-rs7903146	C/C	****

END OF REPORT

Diet Overview

Lean Protein 20% **Calories Per Day Protein** Servings/Day

Healthy Fat Calories Per Day Fat Servings/Day

Complex Carbohydrates Calories Per Day Starch Servings/Day Fruit Servings/Day

Non-Starchy Vegetables

Eat as many servings as you want! At least 5 servings per day

Snack Exchange

ee snack exchange sheet for m

Snack Exchange

Snack Exchanges:

- Use protein, fat, starch and fruit servings from the meal formulas to add a snack to your meal plan
- Example: 1 small sliced apple (1 fruit serving) with 1½ tsp almond or peanut butter (1 fat serving) Subtract 1 fruit serving and 1 fat serving from the meal formula for the next meal of the day

Example: 1500-Calorie Balanced Dairy Free Diet Lunch Formula

- 2 protein servings
- 2 fat servings (becomes 1 fat serving for lunch)
- 3 starch servings
- 1 fruit serving (becomes 0 fruit serving for lunch)
- 2-3 vegetable servings

Healthy Snack Ideas:

- Baby carrots (FREE) and celery (FREE) with 2 Tbsp hump 1 fac erving
- key (2 rotein rvings) and 2 Tbsp avocado (1 fat serving) Green lettuce leaf (FREE) rolled up with 2 oz sliced to
- a salad (2 protein servings) Brown rice cake (3/4 starch serving) topped with up i
- Celery (FREE) stuffed with 2 Tbsp quacamole (1 fat (ng), 1/2 tsp almond butter (1 fat serving), or \% cup tuna salad (1 protein serving)
- 11/4 cup strawberries (1 fruit serving) topped with 4 chopped walnuts (1 fat serving) and cinnamon (FREE)
- 1 hard-boiled egg (1 protein serving with ge, whole-wheat crackers (1 starch serving)
- 6 almonds or 4 walnuts (2 at serving)
- ½ banana (1 fruit servino peanut butter (1 fat serving) 1 1/2 ts
- 1 oz dairy free cheese (1 protein a Ving) with 3 large, whole-wheat crackers (1 starch serving)
- Celery sticks (FREE) with egg salad made with 1 egg (1 protein serving) and 2 Tbsp avocado (1 fat serving)

Meal Plan Ideas

Breakfast Ideas:

1500-Calorie **Balanced Dairy Free Diet Breakfast Formula:** 2 protein servings 2 fat servings 2-3 starch servings 1 fruit serving

- Be sure to use the Serving Sizes table for your specific caloric guidelines and remember that you don't have to eat traditional breakfast foods for breakfast! Leftover chicken breast, salmon and turkey burgers all qualify as acceptable breakfast protein options.
- 2 scrambled egg whites or ¼ cup egg substitute 1 protein serving With 1 oz dairy free shredded cheese 1 protein serving On 2 slices rye toast 2 starch servings Drizzled with 2 tsp extra-virgin olive oil 2 fat servings ³/₄ cup blueberries 1 fruit serving
- 1 large whole-wheat tortilla 3 starch servings Rolled up with 2 oz turkey 2 protein servings 4 Tbsp avocado 2 fat servings Chopped lettuce **FREE** 1 cup cantaloupe 1 fruit serving
- Egg white omelet: 4 egg whites 2 protein servings Cooked with chopped tomatoes, of **FREE** zucchini and mushrooms **FREE** With 1 tsp extra-virgin olicioil 1 fat serving 1 toasted whole wheat English 2 starch servings Topped with 2 Tbsp n hed a pcado 1 fat serving ½ large banana 1 fruit serving
- 6 oz flavored ree Creek tyle yogurt 2 protein servings chop Topped with 1 cu d raspberries 1 fruit serving eat bag thin 1/2 who 1 starch serving With 1 Tk p alp butter 2 fat servings rinkle cinnamon **FREE**
- ½ cup cooked steel-cut oats or 1 cup cooked oatmeal 2 starch servings ped v th 3/4 cup blueberries 1 fruit serving Cinnarion **FREE** opped walnuts 2 fat servings 2 hard-boiled eggs, seasoned with salt & pepper 2 protein servings

Meal Plan Ideas

Lunch Ideas:

1500-Calorie **Balanced Dairy Free Diet Lunch Formula:** 2 protein servings 2 fat servings 3 starch servings 1 fruit serving 2-3 vegetable servings

•	2-3 cups green salad tossed with Chopped non-starchy vegetables ½ cup black beans ½ cup corn 2 oz chopped chicken or turkey Drizzle with 2 Tbsp dairy free vinaigrette dressing 1 small, chopped pear 1 small whole-wheat roll	FREE FREE 1 starch serving 1 starch serving 2 protein servings 2 fat servings 1 fruit serving 1 starch serving
•	Grilled 2 oz veggie burger On large whole grain bun Topped with mustard, lettuce, tomato, opin 2 Tbsp avocado Served with ¾ oz pretzels Side of slaw: 1 cup cabbage 1 Tbsp dairy free vinaigrette pessing 1 small apple	2 protein servings 2 starch servings FREE 1 fat serving 1 starch serving FREE 1 fat serving 1 fat serving
•	Turkey sandwich: 2 oz tarkey 2 slices whole-wheat a ear Mustard, lettuce, a mato and onion With side salad of le turnand on-starchy vegetables 2 Tbsp data free dryssin 1 small orang	2 protein servings 2 starch servings FREE FREE 2 fat servings 1 fruit serving 1 starch serving
	Tofu and Vertex Ne Stir Fry: 2/3 cup tofu With 2-1 dps Chinese vegetables Cooker in 2 tsp sesame oil cup rown rice 11/4 cup strawberries	2 protein servings FREE 2 fat servings 3 starch servings 1 fruit serving
•	2 oz tuna With 2 tsp extra-virgin olive oil mixed with Green onions and garlic powder On bed of 2-3 cups lettuce 5 large whole-wheat crackers or 10 brown rice crackers 1 cup white bean soup 1 small nectarine	2 protein servings 2 fat servings FREE FREE 1 starch serving 2 starch servings 1 fruit serving

